1000部丰满熟女富婆视频,托着奶头喂男人吃奶,厨房挺进朋友人妻,成 人 免费 黄 色 网站无毒下载

首頁 > 文章中心 > 工藝研究論文

工藝研究論文

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇工藝研究論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

工藝研究論文

工藝研究論文范文第1篇

在制造業中,機械制造占據了很大一部分,尤其是當今社會,可以說幾乎所有的制造都是機械加工而成的。因此,機械制造業在我國市場占據了主要的地位,機械制造業在國民經濟當中為國家供應了裝備,它的發展對國民經濟的發展有著很大的影響。我國的制造業為國民經濟的發展貢獻了很大一部分的力量,并且成績斐然。可以根據機械制造業的幾個主要的部分分析一下,以此來看它的發展現狀。

1.1基礎設施與設備

在機械制造業之中,制造專業的設備與儀器的加工對加工的水平有著重要的作用。可是,事實上我國對很多精密的設備零件并沒有自主的知識產權,主要依靠的是進口,這對國內制造業有著極大的限制。對比日本、美國等發達國家,我國在制造技術和加工工藝上有著巨大的差距,正是因為這種機械加工工藝的落后,造成了我國機械加工的效率低下,生產的質量也比較差。

1.2制造加工工藝

當今社會,電子技術和信息技術都由于科技信息的發達而得到了快速的發展。機械制造業也越來越關注科技信息的應用。近幾年來,提起中國制造,人們往往把他與假冒偽劣或是質量沒保障相聯系。產品質量往往是和機械加工工藝相聯系的。因此我國應當加大對于新型和高科技技術的加工方法的擴大應用,努力使制造加工水平得到良好的提高。

1.3智能與自動化工藝技術

計算機技術的日益發展,使得制造工業中的自動化的程度得到了充分的提高。發達國家已經基本實現了機械制造工業的自動化與智能化以及集成化產品制造。可是,在我國只有極少數的大型機械加工企業達到了國際的水平,而大部分工廠仍舊是以傳統的制造工藝進行生產的。

1.4生產與管理部分

制造工業發達的一些國家對于機械加工的管理都是通過計算機進行遠程管理與操控的,相對于我們國家只有極少數的企業應用計算機進行輔的管理之外,剩下的大多數中小型企業依然是處在經驗的管理階段。我國的大部分機械加工企業的管理都是管理水平較低,市場開拓的能力弱,競爭能力低下。

1.5核心技術與開發

自從中國進入世界貿易組織之后,雖然大量對外招商引資,可是在引進先進裝備的同時,核心技術卻是過不去的一道坎,始終難以把握。根據相關數據說明,對外來技術的依賴性居然高至50%,對于這個比例,發達國家卻只有30%以下。國防企業是一定要有自己的核心技術,國防技術的依賴性對于國家的安全性是一個很大的威脅。現在世界格局發生了轉變,中國是一個全球性的制造大國。但是因為核心技術的不足以及自主知識產權的缺乏,致使我國的制造加工業處于國際價值鏈的低端。除去以上分析的幾個問題,國家的政治政策與宏觀方針,創新能力以及人才的培養方案等等,對我國的機械制造與加工工藝都有著一定的影響。文章從機械加工工藝的流程和優化進行重點分析。

2機械加工工藝的優化研究

為使機械加工更好的適應現代市場的轉變,機械加工真要面對一個巨大的改革,而對于機械加工工藝的優化就成了中小型企業的選擇。要想要優化加工工藝,需要從以下幾點考慮:

2.1了解機械加工工藝發展中出現的問題

對于機械加工工藝中的問題在上文中已有提到,現階段最主要的問題就是如何提高我們自主創新的能力以及對于核心技術研發的能力和怎樣提高我國制造工藝信息化的水平。

2.2優化工藝流程建立在提高效益的基礎之上

對引進先進的設施設備注重看待,淘汰掉落后的加工工藝。通過對原材料形狀、性能、材質等進行相應的改變與優化,成為更加優良的成品的過程就是加工工藝的優化。新的工藝主要的一點就是要提高生產的效率降低制造的成本。用新進的科技技術,運用新的裝備是優化工藝的最有效的路徑。對技術人員研發產品過程中的知識產權進行保護,對技術人員的待遇進行合理提高。我國在機械加工上通常是缺少原則的,存在普遍的仿制加工的現象。對于知識產權的維護幾近于無,這不僅是損害了發明者的利益,還禁錮了機械制造工藝的發展,大大打擊了制造工藝者的創新工藝的積極性。國家應該制定相關政策,打擊技術盜用,維護技術人員的利益。

3對于制造工藝成本的優化

主要內容:①對工藝材料進行合理的選擇,材料本身的性質,如硬度、性能、可加工性等對于機械制造工藝都有一定的影響;②對于金屬材料的切割盡可能減少,這樣做不僅節約了時間,同時也減少了原材料的浪費,但是減少的程度與實際加工要進行優化比對,做到綜合最佳;③降低加工的難度。因為機械加工工藝的操作與工具的一些限制,有的形狀難以加工。因此要盡可能的把難度降到最低,但是還是要做到符合要求。

4結束語

工藝研究論文范文第2篇

鋼絞線壓花錨固技術使用時間不長,尚未形成一套成熟的經驗,尤其是七孔壓花錨,施工實踐相當少。根據一些資料介紹,混凝土的強度,構造配筋的多少、混凝土握裹層厚度及鋼絞線長度等因素,對壓花錨固技術的成敗都起著非常重要的作用。因此,為了驗證設計,并為施工提供必要的數據,在箱梁施工前進行了一次壓花錨固性能試驗,由試驗積累了不少有價值的資料與經驗。

1試塊的設計

1.1試塊尺寸地擬定;

錨固板厚度、混凝土強度、構造鋼筋的布置、鋼絞線的錨固長度及錨具質量等是影響壓花錨固性能的幾項指標。為了盡可能使試塊與實際箱梁各項參數相接近,故擬定試塊尺寸長300cm、寬150cm、厚20cm,混凝土的強度為C50,在錨固端設鋼筋網片和螺旋筋,均與實橋保持一致。試塊內鋼絞線品種與實橋相同。鋼絞線壓花形狀按實橋設計圖制作,壓花后用鋼筋將鋼絞線固定好,并采用與實橋相同的扁型波紋管及7孔扁錨具固定。試塊內設一部分構造鋼筋,其數量較實橋設計圖的鋼筋量稍少。鋼絞線錨固長度較大,為增加其穩定,在試塊的兩側增設20cm高的加勁肋。試塊分兩次灌注,間隔6天,在灌注試驗塊的同時做砼強度試塊5組。

1.2測點布置及試驗目的;

(1)為弄清混凝土對鋼絞線粘結錨固力沿長度的變化,選擇有代表性的鋼絞線沿長度方向設應變測點。每個試塊選擇4根鋼絞線,每根鋼絞線按等距離設2~3個測點。在測點處將鋼絞線打磨平整,再按照工藝要求,在每個測點粘貼兩片應變片。

(2)為了測試出壓花錨附近混凝土應力分布情況,對第一號試塊測試采用:a.在試塊內埋設鋼筋應變計24根;b.在試塊的一面粘貼大標距(標距100cm)應變片;c.在試塊的另一面采用手持式應變儀,共設測點44組。對第二號試塊的應力測試采用:a.在試塊內埋設鋼筋計16根;b.在試塊的一面采用手持應變儀,共設測點44組。

2實驗裝置及加載方法

實驗設備主要有張拉千斤頂YCQ-25,及配套的油泵、油壓表。試驗前用YE-5000壓力機進行標定。測量混凝土變形用的BYJ-2行應變儀和手持式應變儀。為了觀測砼的裂紋還配備了刻度放大鏡。

按設計要求,當混凝土強度達到設計強度的85%后,即可進行張拉試驗。第一號試塊灌注后,故于3日后開始試驗。試驗前對混凝土強度試塊試驗為57.6MkP,稍超出了設計張拉強度。第二號塊試驗時,混凝土的強度控制在設計強度的85%之內,測量混凝土應力時不再貼應變片,僅采用手持式應變儀。從灌注試塊后第二天開始,每天上午對強度試塊進行試驗。進行第二號塊試驗時混凝土試塊張拉強度39.7MPa,盡管較設計張拉強度42.5MPa低一點,但這是偏于安全的。

兩次試驗的加載程序均按設計張拉力的40%、70%、100%三級加載。具體加載方法及測試內容如下:

(1)加載至40%(78KN)后保持荷載5分鐘,對各測點進行測試;

(2)當加載至70%(136.7KN)后保持10分鐘,進行各測點的測試,并觀測混凝土表面是否有裂縫;

(3)當加載至100%(195.3kN)后保持10分鐘,再次進行各測點的測試,觀測混凝土表面是否有裂縫;

原計劃加載至100%后持荷2小時,繼續觀測各項表面數據變化情況,并將試塊表面清掃干凈,仔細觀測表面有無裂縫,再持荷一小時繼續加載(超張拉)至破壞。但因千斤頂額定最大張拉力為250kN,油泵壓強上不去,最后僅加載至230kN即停止,此時僅超張拉18%,在此荷載狀態下進行了各項數據的觀測和混凝土表面裂縫的觀測。鑒于觀測結果正常,決定再持荷24小時繼續觀測,第二天再去觀測時,試塊表面仍未出現裂縫。

3結果及分析

3.1鋼絞線受力測試結果:

將兩次試驗過程中鋼絞線上應變測點在各階段中測試數據換算成軸向拉力(鋼絞線彈性模量為1.95*105MPa,斷面積為140mm2),從數據看出,鋼絞線的測點距張拉端近的點實測拉力最大;第二個測點(距離張拉錨固端70cm~80cm)拉力小了很多;第三個測點(距離張拉錨固端110cm~130cm)基本上沒有拉力存在。這種分布隨著張拉階段不同有規律的變化。

3.2鋼絞線與混凝土的粘貼錨固性能;

同一根鋼絞線相鄰兩點拉力差即是該段混凝土對鋼絞線粘結錨固力。從數據看這種錨固力也是從張拉端開始逐漸遞減,而且遞減得很快。到第二個測點已經變得很小了。由第二個測點到第三個測點之間基本沒有錨固力。說明有效錨固長度只到第二個測點為止,往后基本沒有錨固作用。

3.3試塊混凝土應力測試結果;

本次試驗在兩個試塊內都埋設了應變式鋼筋計,但由于灌注過程中失效一部分,加上測試結果也不十分理想,比較離散。此外在1號試塊表面貼了不少大標距應變片,但由于粘貼時混凝土齡期僅3天,混凝土內部的自由水尚未完全散失,因此不少測點因絕緣度差使測試數據規律性差。三種測試手段中以手持式應變儀測試結果相對最穩定、規律性也好。

3.3.1豎向應力;

將兩個試塊的手持式應變儀測試值換算成應力值,可以看出,張拉過程中在壓花錨頂端出現了拉應力。拉應力最大為1.44MPa。其他各斷面均為壓應力。張拉錨頭附近斷面的壓應力最大,可達6.12MPa(2號試塊中)。

3.3.2橫向應力;

兩個試塊的實測應變值除在張拉端錨頭的兩側有很小的拉應力出現外,其他均為壓應力。最大壓應力大約在試塊長度1/2斷面處,最大值為2.84MPa(1號試塊中)。

從兩個試塊的測試結果看,第二次試驗的應力值普遍偏大,兩次試驗,混凝土的齡期不同,兩個試塊的混凝土強度有一定的差別,第一號試塊張拉時,混凝土強度為57.6MPa,第二號試塊張拉時強度為39.7MPa。雖然張拉力一樣,由于強度不同產生的應變不同。而換算時采用同樣彈性模量值,結果使計算出的應力值有一個差別。

3.3.3試塊混凝土表面裂紋情況兩次試驗每次張拉后都檢查試塊混凝土表面,特別進行第三級張拉和超張拉后,經過仔細的檢查,均未發現混凝土表面有裂紋。

從混凝土應力測試結果看,拉壓應力值都很小,也不足以造成混凝土開裂。

4結論

4.1本次壓花錨固性能試驗不論試塊尺寸,混凝土強度還是壓花錨固長度均與實梁設計保持一致,其中試塊的構造配筋比實梁偏少;另外第二個試塊張拉時混凝土的強度只有39.7MPa,比設計要求的42.5MPa還小,而且對兩個試塊都按設計張拉力的15%~18%進行超張拉,既沒有發生鋼絞線拔出,也沒有發生表面有裂紋。說明采用壓花錨的設計是合理的,所設計梁的斷面尺寸(橋面板厚度20cm)是滿足要求的,按照設計要求進行施工是安全的。

工藝研究論文范文第3篇

關鍵詞:玻璃鋼面板;制造工藝;復合型材料;建筑行業;優越性;先進性

近年來,隨著我國市場經濟快速發展,工藝水平不斷提升,材料工程技術日益成熟,玻璃鋼面板應用變得越來越廣泛。玻璃鋼作為一種新型的復合材料,其被廣泛應用于各行領域,例如玻璃鋼面板材料被廣泛應用于家電制造、船舶制造、汽車、制造零件以及玻璃纖維增強塑料等方面。近年來,國家加強了金屬消耗管理和控制,很多材料消耗考慮到節約問題,發明新型節能材料勢在必行。本文針對玻璃鋼面板制造工藝進行研究,比較性地分析了玻璃鋼面板的優越性和先進性,探討了玻璃鋼面板新技術的發展趨勢。

1玻璃鋼面板工藝簡介

玻璃鋼(FRP)即通常所說的纖維強化塑料,指的是環氧樹脂、增強不飽和聚酯、酚醛樹脂基體。玻璃鋼主要以玻璃纖維或者制品作為增強材料的增強塑料。玻璃鋼具有質輕、堅硬、不導電、機械性能較高、耐腐蝕等特性,其能夠替代鋼材制造機械零件。近年來,玻璃鋼技術發展日益成熟,作為塑料基的增強材料,玻璃纖維已經擴大到了很多方面。各種類型的纖維材料制成增強塑料,導致了增強塑料的類型逐漸增多,而玻璃鋼材料逐漸成為了新型增強塑料的一部分。隨著人們對于環境衛生要求越來越高,新型材料的安全性、環保性、節能性等均被很多制造企業所看重,而玻璃鋼面板很好地滿足了這些條件。

2玻璃鋼面板的優越性比較研究概述

玻璃鋼面板被廣泛應用于各行各業,而且其優越性比較突出,下面將針對電器市場上的玻璃鋼面板和不銹鋼面板的燃氣灶性能進行比較,分析出玻璃面板的優越性。

2.1材質比較

不銹鋼屬于耐空氣、水以及蒸汽等弱腐蝕介質和酸堿鹽侵蝕的化學腐蝕鋼材。不銹鋼經過多年使用之后還可能保持原來的模樣,其耐用程度很高,但是鋼材的消耗相當大,不銹鋼的燃氣灶所有器件均需要金屬,甚至螺絲釘都需要鋼材。玻璃鋼面板屬于一種預應力玻璃,為了提升玻璃鋼的強度,通常會采用化學方法和物理方法來擠壓玻璃,玻璃承受外力之前要抵消表層應力,進而提升玻璃鋼的承載能力。玻璃鋼面板的材質主要是由硅元素構成的,其元素儲量在地球上非常龐大,因此材料易取、方便生產。

2.2安全性比較

不銹鋼的燃氣灶在工作的時候,其灶頭溫度相當高,而且燃氣灶不銹鋼面板的隔熱問題經過特殊處理得以解決。因此即使燃氣灶工作時間相當長,面板的溫度也仍然如常溫一樣。玻璃鋼面的燃氣灶出現過爆炸事件,因此很多用戶非常擔心玻璃鋼面板的安全性。玻璃鋼面板本身不具備爆炸條件,但是用戶在使用過程中操作不當則很容易引起爆炸。值得注意的是,玻璃鋼燃氣灶必須定期清理灶圈雜質,避免出現火孔堵塞問題,平日做好玻璃鋼面板的清理和養護工作,如此便可有效預防玻璃鋼燃氣灶爆炸。

2.3清潔性能比較

不銹鋼面板清潔上可以使用抹布和清潔劑進行清洗便可直接去除油污,但是抹布擦拭之后不銹鋼面板很可能留下水漬,影響不銹鋼面板的美觀程度。玻璃鋼面板的清潔和不銹鋼的清潔方法一樣,但是即使清理過程中遺留水漬也不會影響面板的美觀度,而且玻璃鋼面板在清潔上較之不銹鋼面板的清潔更加容易簡單且不影響美觀。綜上所述,不銹鋼面板和玻璃鋼面板在燃氣灶中的應用各自具有其獨特的優勢,因此在進行選擇的時候要根據實際情況選擇材質。玻璃鋼面板的應用變得越來越廣泛,其優越性體現在很多方面,而且在不同的行業領域應用不一樣,本次僅針對燃氣灶應用優越性方面進行二者比較,由于篇幅關系其他領域應用不做贅述。

3玻璃鋼面板制造工藝流程以及技術

玻璃鋼面板制造生產的時候,具有完整的生產工藝流程:模具清理玻璃纖維制品裁剪拋光涂刷脫模劑配料涂刷膠衣層鋪層檢查檢驗以及測試。其中模具清理作為玻璃鋼面板制作的工藝準備階段,尺寸檢查和表面加工必須在該階段完成。尺寸檢驗的時候應將誤差控制在5%之內,模具的結構形成形狀必須要符合圖紙要求;表面加工主要是針對模具平面加工,確保成品玻璃鋼面板經過模具糊制完成之后表面能夠光潔、平整。玻璃纖維制品裁剪時,需要開展裁剪前檢查,確保玻璃纖維制品必須要無褶皺、無缺陷、無潮濕、無變霉等情況,裁剪必須要按照規定的布紋方向進行,且裁剪的尺寸要與設計保障一致。拋光涂刷脫模劑操作在玻璃鋼面板制作的時候必不可少,通過拋光可以使得表面變得光潔,而涂刷脫模劑則為后期工件脫模打基礎。配料要求玻璃鋼面板制作時必須按照手糊工藝操作規程,應使用廠家提供的原料進行配比,配料過程中應注意配料的溫度適中,配方配料要滿足要求。膠衣層涂刷過程中應限制涂刷的厚度,涂刷必須要保障涂料均勻,膠衣層的厚度為250~500g/m2。鋪層操作時,要求玻璃纖維不能夠出現變霉、彎曲變形、褶皺、潮濕等缺陷,否則不能夠進行轉序;鋪層操作時要嚴格控制樹脂用量,確保涂敷均勻。檢驗檢查以及測試作為玻璃鋼面板制作的最后流程,那么在進行檢查的時候必須要開展固化情況檢查、糊制作業完成之后檢查,并完成成品檢驗以及熱性能測試等操作。

4玻璃鋼面板制造新技術展望

隨著科學技術的發展,新型技術在工業生產中迎來了極大的挑戰和機遇。我國面板廠商的生產能力隨著市場份額的增加,其生產量、銷售量也在逐漸增加。雖然玻璃鋼面板行業也呈現出增長態勢,但是和世界其他玻璃鋼面板生產企業來比,還仍然屬于初級起步階段。經過多年的發展,我國玻璃鋼板面在電器行業、汽車行業、建筑行業以及手機行業的應用比較廣泛。玻璃鋼面板在電器行業中的應用分為彩晶玻璃面板和鋼化玻璃面板兩種形式,彩晶玻璃面板是最近幾年出來的新型材料,其在家電配件行業應用率還較低,很多還是應用的白板玻璃面板,而鋼化玻璃則更多被應用于黑白家電玻璃配件。鋼化玻璃在汽車行業的應用也相當廣泛,20世紀50年代將玻璃鋼應用于企業制造,其主要作為車用的潛在材料。經過長時間的發展,20世紀80年代實現了玻璃鋼汽車零部件的批量制造和研制,其已經成為了車用材料之一,涵蓋了GMT、SMC、手糊等工藝,這些工藝選擇較為靈活且投資少、工藝門檻低,被國內汽車生產商逐步掌握。

5結語

隨著玻璃鋼面板制造工藝日益成熟,其在國內的應用變得越來越廣泛,玻璃鋼面板材料作為一種新型的復合材料,符合環保和節能要求,因此玻璃鋼面板的發展潛力巨大。本文針對玻璃鋼面板制造工藝相關問題進行研究,從基礎認識到工藝施工進行詳細介紹,希望能夠為廣大讀者提供玻璃鋼面板制造與發展相關研究交流。

作者:馬偉 單位:中車四方車輛有限公司

參考文獻

[1]趙鵬飛,薛小平,張元明.小型無人機玻璃鋼蜂窩夾層結構機翼的制造[J].玻璃鋼/復合材料,2010,(3).

[2]顏晨,李曉玲,李義全.大型復合材料風電葉片模具整體設計與制造技術[J].玻璃鋼/復合材料,2014,(5).

[3]張元明,趙鵬飛.玻璃鋼蒙皮/全腔填充泡沫塑料夾芯結構機翼設計[J].玻璃鋼/復合材料,2013,(1).

[4]王藝真,張曉君,謝永和,等.Outbound46豪華帆船制造工藝流程[J].船海工程,2013,(6).

工藝研究論文范文第4篇

1.1材料

微生物油脂(含43%ARA),嘉必優生物工程(武漢)有限公司贈送;固定化酶(LipozymeRMIM)購于北京諾維信公司;1,3-ARA-DAG、1,2-ARA-DAG購于瑞典Larodan公司;正己烷、乙酸乙酯、冰乙酸、甲醇均為色譜純,購于德國CNW公司;氫氧化鈉、尿素、無水硫酸鎂、鹽酸、乙醇、石油醚、甘油、無水乙醚、4A型分子篩均為分析純,購于國藥化學試劑集團。

1.2試驗儀器

分析天平(AUY120,SHIMADZU,Japan);旋轉蒸發儀(RE-52A,上海亞榮生化儀器);集熱式恒溫磁力攪拌水浴鍋(DF-101S,鞏義市予華儀器有限責任公司);氣相色譜儀(Agilent7890A,美國Agilent公司);高效液相色譜儀(Agilent1200,美國Agilent公司);質譜儀(AB4000Q-Trap,美國AB公司);微型旋渦混合儀(WH-3,上海滬西分析儀器有限公司)。

1.3試驗方法

1.3.1尿素包埋法純化微生物油脂于500mL三口瓶中加入40g微生物油脂、200mL無水乙醇、30%氫氧化鈉(以微生物油脂質量計),充氮氣保護下,在恒溫水浴加熱攪拌器上80℃水浴回流2h,加入100mL的蒸餾水,攪拌均勻并冷卻至室溫,加鹽酸酸化至pH=1~2左右[18]。用無水乙醚∶石油醚=1∶1(V/V)混合溶液萃取2~3次,將萃取液水洗至中性,并旋轉蒸發除去有機相,得到游離形態的脂肪酸混合物。將其加入到尿素/乙醇溶液中,氮氣保護下回流2h后,迅速轉移到250mL的錐形瓶中,密封后于-20℃冰箱中結晶過夜。所得到的尿素包合物經抽濾,旋轉蒸發和萃取后,經無水硫酸鎂脫水得到純化后的脂肪酸。稱重并計算回收率。并取少量原樣品和尿素包埋后的樣品進行甲酯化衍生化處理,經GC檢測尿素包埋前后ARA的含量變化。1.3.2酶法合成富含ARA的1,3-DAG按照一定的摩爾比準確稱取ARA和甘油于20mL兩口圓底燒瓶中,氮氣保護條件下,將其置于一定溫度的水浴鍋中,待攪拌均勻后,加入一定量的固定化酶LipozymeRMIM和20%(占底物總質量)已活化的4A型分子篩,在200r/min的轉速下攪拌反應,按一定的時間間隔取樣,采用HPLC-MS-MRM分析酯化后產物及各組分的相對百分含量。1.3.3脂肪酸的GC檢測脂肪酸的甲酯化衍生化處理采用本實驗室建立的方法[19]。GC檢測條件為色譜柱:HP-FFAP毛細管柱(Agilent,30m×0.25mm×0.5μm);檢測器:氫離子火焰化檢測器(FlameIonizationDetector,FID);以氮氣為載氣,進樣口壓力為25psi,進樣量為1μL,分流比為1∶30;升溫程序:初始溫度210℃保持7min,以20℃/min升溫至230℃并保持5min,總分析時間為12min;進樣口和檢測器溫度分別為260℃和280℃。采用面積歸一法計算脂肪酸的相對百分含量。1.3.4產物中1,3-DAG的HPLC-MS-MRM檢測產物中1,3-ARA-DAG的HPLC檢測條件為色譜柱:Agilent-SIL(5μm,2.0mm×250mm);流動相:正己烷/乙酸乙酯/乙酸=80∶20∶1,(V/V/V);流速:0.5mL/min;柱溫:40℃;進樣量:10μL;總時間:20min。檢測器MS的條件為APCI模式:正離子;CUR:137.9kPa;CAD:medium;NC:27.38kPa;溫度(TEM):450℃;掃描模式:MRM-EPI;掃描速度:1000u/s;離子源氣體1(ionsourcegas1,GS1)∶344.75kPa;輔助加熱(interfaceheater,ihe):開;DP:80V;CE:35V和55V;碰撞電壓擺幅(collisionenergyspread,CES):5V;碰撞室輸出電壓(collisioncellexitprotential,CXP)17V;質量范圍:500~1000m/z。采用面積歸一法計算產物中1,3-DAG的相對百分含量。1.3.5數據分析本實驗采用SAS(statisticalanalysissystem)9.0統計軟件進行數據處理,實驗重復三次,取其平均值。用Origin作圖工具,對結果進行分析。

2結果與分析

2.1尿素包埋法純化微生物油脂中的ARA

尿素包埋法作為一種普遍的富集LC-PUFAs的方法,一直受到人們的青睞[21]。本實驗中,當尿素∶混合脂肪酸∶甲醇比為2g∶1g∶20mL,結晶溫度為-20℃時,經GC檢測分析后,ARA的相對百分含量由原來的43%(如圖1中A)提高到83%,且回收率為54.35%。力為25psi,進樣量為1μL,分流比為1∶30;升溫程序:初始溫度210℃保持7min,以20℃/min升溫至230℃并保持5min,總分析時間為12min;進樣口和檢測器溫度分別為260℃和280℃。采用面積歸一法計算脂肪酸的相對百分含量。1.3.4產物中1,3-DAG的HPLC-MS-MRM檢測產物中1,3-ARA-DAG的HPLC檢測條件為色譜柱:Agilent-SIL(5μm,2.0mm×250mm);流動相:正己烷/乙酸乙酯/乙酸=80∶20∶1,(V/V/V);流速:0.5mL/min;柱溫:40℃;進樣量:10μL;總時間:20min。檢測器MS的條件為APCI模式:正離子;CUR:137.9kPa;CAD:medium;NC:27.38kPa;溫度(TEM):450℃;掃描模式:MRM-EPI;掃描速度:1000u/s;離子源氣體1(ionsourcegas1,GS1)∶344.75kPa;輔助加熱(interfaceheater,ihe):開;DP:80V;CE:35V和55V;碰撞電壓擺幅(collisionenergyspread,CES):5V;碰撞室輸出電壓(collisioncellexitprotential,CXP)17V;質量范圍:500~1000m/z。

2.2產物中1,3-DAG的HPLC-MS-MRM檢測

脂肪酸與甘油酯化反應的產物中有TAG、1,2-DAG、1,3-DAG、1(2)-MAG和未反應的脂肪酸及甘油。本實驗就產物中主要的產物TAG、1,2-DAG、1,3-DAG進行定量檢測,通過優化色譜條件,最終確定流動相:正己烷/乙酸乙酯/乙酸=80∶20∶1,(V/V/V);流速:0.5mL/min;進樣量:10μL;總時間:20min時,分離效果較好。

2.3脂肪酶催化合成

1,3-DAG的單因素實驗2.3.1反應時間對酶促酯化合成1,3-DAG的影響本實驗在甘油與ARA摩爾比為1∶2,脂肪酶添加量為5%(以底物總質量計),反應溫度為50℃的條件下,定期取樣分析產物中1,3-DAG含量的變化。結果如圖3所示,隨著反應時間的延長,底物中1,3-DAG的相對百分含量呈現先增加后減小的趨勢,并在2h時,達到最大值68.9%;2h后,1,3-DAG的相對百分含量明顯下降,到10h時降為16.1%并趨于穩定。這可能是因為隨著反應時間的延長,1,3-DAG發生了酰基轉移,進而轉化為1,2-DAG或者TAG,從而使反應產物中1,3-DAG的含量降低。因此,2h為最佳的反應時間。2.3.2反應溫度對酶促酯化合成1,3-DAG的影響本實驗在反應時間(2h)、脂肪酶添加量(5%)和底物摩爾比(甘油/ARA=1∶2)一定的條件下來優化溫度對酯化合成1,3-DAG的影響。由圖4可知,隨著反應溫度的升高,1,3-DAG的相對百分含量呈現先增加后減小的趨勢,并在50℃時達到最大,為68.3%。隨著溫度的繼續升高,其含量呈現遞減的趨勢。這可能是由于溫度的升高促使脂肪酶的活力逐漸提高,而且溫度升高有利于底物混合均勻,降低反應體系的黏度,從而更有利于酯化反應的進行。然而,隨著溫度進一步升高,酰基轉移率也相應的增加,從而使1,3-DAG的相對百分含量降低;此外,長時間的高溫反應環境條件會造成部分酶活力喪失,甚至會造成ARA發生氧化,均可能導致1,3-DAG相對百分含量的降低。因此,綜合考慮以上因素,50℃作為反應溫度較佳。2.3.3不同底物摩爾比對酶促酯化合成1,3-DAG的影響在反應溫度50℃、反應時間2h及脂肪酶添加量為5%的條件下,考察不同底物摩爾比對反應結果的影響。由圖5可知,在一定范圍內,隨著體系中ARA含量的增加,產物中1,3-DAG的相對百分含量逐漸增加,并在甘油/ARA為1∶2時,1,3-DAG的相對百分含量最高達72.1%。然而隨著ARA的繼續增加,產物中1,3-DAG的量開始降低,這可能是過量的ARA與產物中的1,3-DAG進一步發生反應生成了TAG。因此綜合考慮,反應體系中底物摩爾比甘油/ARA采用1∶2為宜。2.3.4脂肪酶添加量對酶促酯化合成1,3-DAG的影響在反應時間2h、反應溫度50℃和底物摩爾比(甘油/ARA)為1∶2的條件下,設計實驗考察脂肪酶添加量對產物中1,3-DAG的影響。如圖6所示,脂肪酶的添加量對反應有顯著影響。脂肪酶添加量在1%~5%的范圍內,1,3-DAG的相對百分含量隨著脂肪酶添加量的增加而增加,并在酶添加量為5%時,1,3-DAG相對百分含量達到最大值82.8%;當繼續增加酶量到10%時,1,3-DAG的含量有所降低,這可能是因為底物已經被脂肪酶分子所飽和,且隨著脂肪酶添加量的增加,一定程度上也增加了發生酰基轉移的幾率,將1,3-DAG轉化為1,2-DAG或者TAG。綜合考慮以上因素,最佳的脂肪酶添加量為5%。

2.4響應面試驗結果與分析

2.4.1回歸方程的建立與分析基于單因素試驗結果,選取溫度(X1)、時間(X2)、酶加量(X3)及底物摩爾比(X4)為自變量,以產物中1,3-DAG相對百分含量(以峰面積表示)Y為響應值,采用中心組合設計實驗,對所獲得的單因素條件進行響應面優化。以Box-Benheken實驗設計獲得數據為基礎,在此基礎上利用SAS9.0軟件對獲得的數據進行擬合分析,得到1,3-DAG含量的動態參數方程如下:Y=152300+20562.58X1+36337.5X2+47125X3+1780.25X4-20213.37X1X1+1502.25X1X2+12545X1X3-12985X1X4-38758.75X2X2+10302.5X2X3+12946.75X2X4-30572.5X3X3+15107.5X3X4-20180.37X4X4。從回歸方程模型系數的方差分析結果(表3)可以看出,模型P=0.0063<0.01,說明回歸模型方程極顯著。模型的R2值為0.8407,表明優化好的參數值有大約84.07%來源于回歸方程模型,同時模型的失擬項P=0.544869>0.05,符合失擬項不顯著的要求。這表明此模型可以很好的用來預測最優化條件。且根據方差分析可知,各因子對1,3-DAG的影響主次關系為X3>X2>X1>X4,即酶添加量最大,其次為時間、溫度,底物摩爾比最小。2.4.2響應面優化及模型驗證為了更直觀地顯示各因素之間的關系,對經響應面法優化后的結果進行規范分析,考察SAS9.0所擬合的響應曲面形狀,獲得響應面立體圖及對應的等高線圖,如圖7所示,模型具有穩定點,各因素間的交互作用較明顯。經擬合分析后,得出酶促酯化合成1,3-DAG的穩定值及最優條件,最佳工藝參數為:X1(溫度)57℃,X2(時間)2.7h,X3(酶量)7.9%,X4(摩爾比)2.5∶1。在此最優條件下,進行三次重復驗證實驗,1,3-DAG的實際平均峰面積為9.8×104,與理論值(1.0×105)非常接近,說明該預測模型是可靠的;并且,此時1,3-DAG在整個DAG和TAG混合物中的相對百分含量為73.5%,且1,3-ARA-DAG含量為38.1%。

3結論

工藝研究論文范文第5篇

關鍵詞:混凝土;快速施工;方案及工藝;三峽工程

1概述

三峽工程大壩為混凝土重力壩,最大壩高181m,樞紐工程混凝土澆筑總量達2800萬m3。如此巨大的混凝土工程施工總量,導致了三峽工程混凝土施工澆筑的高強度施工。

1.1混凝土施工強度

三峽工程混凝土澆筑高峰集中在第二階段工程,其混凝土澆筑總量達1860萬m3。根據施工進展及總進度的安排,1998年為118萬m3,1999年為458萬m3,2000年為548萬m3,2001年為403萬m3,2002年計劃完成142萬m3。施工高峰時段主要集中在1999~2001年三年間,其中,以2000年的混凝土澆筑強度為最高,要求年最高澆筑量達到500萬m3,月最高達到40萬m3,日最高達到2.0萬m3以上。

1.2混凝土施工手段

根據對澆筑強度和施工場地分析,采用傳統的門塔機澆筑施工手段是不能滿足澆筑強度要求的,必須尋找新型高強度的澆筑手段。

另外,大型門塔機澆筑方案從拌和樓出機口到澆筑倉,均采取間歇式給料方式,供料的中轉環節多,供料效率低下,多座拌和樓與多座門塔機再與多個澆筑倉之間生產組合錯綜復雜,易于錯料,更增加了施工管理的難度。

1.3混凝土施工工藝

三峽大壩沿縱向分若干壩段,沿壩段分若干壩塊,沿壩塊分幾十個升層,每個升層又分若干澆筑層。一個升層即構成混凝土的一個澆筑倉位。一個混凝土倉的施工全過程是從兩個同步進行的流程開始的,一個流程是混凝土澆筑的倉面準備;另一個流程是混凝土生產及運輸,當兩個流程匯集到一起時,便形成倉面混凝土澆筑流程,緊后的流程則是混凝土護理。如此循環推進,三峽第二階段工程高峰期大壩施工部位將出現20多個倉面同步澆筑的景象。

由此可見,采用傳統的混凝土澆筑工藝如散裝鋼模板,人工手持式振搗等已遠不能滿足如此高強度和十分復雜的混凝土澆筑需要,必須相應采取新的施工倉面配套和施工工藝。

2大壩混凝土快速施工布置及方案

以塔(頂)帶機為主,輔以大型門塔機和纜機的施工方案總體思路是:塔帶機澆筑一條龍作業,生產效率高,適應于連續高強度的混凝土施工,承擔混凝土澆筑的主要任務;配備大型門塔機、纜機等作為輔助設備,負責金結安裝、備倉、倉面設備轉移和澆筑部分混凝土等任務,避免因塔(頂)帶機的工況轉換而影響效率。拌和能力的配備留有一定余地,以利塔(頂)帶機效率的充分發揮。塔(頂)帶機供料線布置為一機一帶,確保塔(頂)帶機運行的可靠性。

2.1混凝土拌和設備

4個混凝土拌和系統,共7座攪拌樓,常態常溫混凝土總生產能力為1960m3/h。各拌和樓均能生產7℃冷混凝土。

(1)布置在基坑下游79m高程拌和系統設置2座4×4.5m3自落式拌和樓,每座樓生產能力為320m3/h。此系統主要供應泄洪壩5#~23#壩段混凝土澆筑。

(2)布置在左岸廠房壩段上游面90m高程拌和系統設置2座拌和樓。4×6m3自落式拌和樓生產能力為320m3/h,4×3m3自落式拌和樓生產能力為240m3/h。此系統主要供應泄洪壩段1#~5#壩段、導墻壩段及左廠壩段11#~14#壩段混凝土。

(3)布置在左非泄洪流壩段下游120m高程拌和系統設置2座4×3m3自落式拌和樓,生產能力為2×240m3/h。此系統主要供應左非泄洪流壩段及左廠1#~10#壩段混凝土。

(4)布置在左岸進廠房公路左側82m高程拌和系統設置1座4×3m3自落式拌和樓,生產能力為240m3/h。此系統主要供應左岸廠房混凝土。

2.2混凝土澆筑設備

主要設備有6臺塔(頂)帶機,塔帶機與拌和樓連接的6條總長3800m的膠帶混凝土輸送線,4臺胎帶機,7臺MQ2000型高架門機,2臺25t擺塔式纜索起重機,1臺K1800型塔式起重機,1臺MQ6000型門機,2臺300t履帶吊。

(1)泄洪壩段在壩軸線下游76m順壩軸線方向布置4臺塔帶機,主要用于該部位的混凝土澆筑,在壩軸線下游121m順壩軸線45m高程的軌道上布置1臺K—1800型塔吊和1臺MQ2000型高架門機。其工作任務是,前期協助混凝土施工,后期以吊裝金屬結構為主。

(2)廠房壩段壩軸線下游44m順軸線布置2臺頂帶機,主要用于左廠7#~14#壩段混凝土澆筑,壩軸線下游65m順軸線120m高程的施工棧橋上布置2臺MQ2000型門機,專門用于輸水壓力鋼管和水輪發電機埋設件的吊裝。

(3)廠房部位在廠房下游面距壩軸線195m的30m高程順壩軸線方向的軌道上布置4臺MQ2000型高架門機,用于左岸廠房部位的混凝土施工。

(4)纜索起重機的布置2臺擺塔式纜索起重機為廠壩第二階段工程施工提供了一個空中走廊,主塔設在左非泄洪8#壩段185m高程上,副塔設在導流明渠縱向圍堰壩段160m高程頂部,跨度1416m,在壩軸線長度方向可控制整個廠壩第二階段工程的長度,寬度可控制從壩軸線以上15m至壩軸線以下65m,即2臺纜機可控制上下游方向80m寬度且在工作區域寬度方向相互搭接20m。

(5)公用設備第二階段工程廠壩部分分3個標段,由3個施工企業負責施工。4臺胎帶機、2臺300t履帶吊等業主擁有的移動性強的設備不固定在一個標段使用,根據施工需要可靈活調配。

3大壩混凝土快速施工倉面配套及工藝

采用塔(頂)帶機澆筑混凝土,其澆筑強度將成倍地提高,因此,對澆筑倉面各項資源配置無論是容量還是數量都將明顯增加,對倉面組織管理水平的要求也將顯著提高。

3.1塔(頂)帶機澆筑的倉面配套

3.1.1倉面設備配套

(1)平倉機:一般每1個塔(頂)帶機澆筑倉配置1臺平倉機和平倉鏟,死角部位輔以人工平倉振搗。

(2)振搗機:對于素混凝土或鋼筋不太多的混凝土澆筑倉,通常配備1臺8頭平倉振搗機加3~4部手持式振搗棒或者1臺5頭平倉振搗機加4~5部手持式振搗棒。對于鋼筋非常密集或有水平鋼筋網和過流面等比較特殊的倉位,振搗要求比較高,一般不配平倉振搗機,直接配5~8部手持式振搗棒用人工振搗。

(3)噴霧機:在高溫季節澆筑混凝土時,每倉配備2~3部搖擺式噴霧機。

3.1.2倉面人員配套

(1)施工人員應按照倉位情況進行合理配置,一般素混凝土倉、少筋混凝土倉配備8~12人,多筋混凝土倉、水平鋼筋網倉、過流面混凝土倉配備11~16人。

(2)倉面配備值班木工、鋼筋工、預埋工、電工和止水專職人員。各工序值班、帶班人員至少1名到位,并掛標識牌。

(3)倉面上配置專人分散集中的粗骨料。

3.1.3倉面工具配套

(1)每個澆筑倉至少配置2桶、2瓢、3鍬用以倉面處理。

(2)為防止混凝土澆筑過程中的骨料分離及骨料集中現象,每個澆筑倉至少配備2把專用耙

(3)配備2~3只真空吸水管,用以隨時吸除倉面的混凝土泌水或集水。

(4)配備2臺灑水器,用以收倉后對倉面灑水養護。

3.1.4其它器材設施配套

(1)在混凝土開倉前,保證風、水、電通暢。

(2)采用平鋪澆筑法施工時,澆筑倉應準備保溫被待用,隨著平倉振搗的進展,及時覆蓋保溫被,保溫被之間應有10cm的搭接長度,以確保保溫效果。

(3)雨季施工時,倉面配有彩條布和鋼筋等材料,搭設活動防雨棚等。

3.1.5倉面組織管理

為保證塔帶機澆筑混凝土一條龍正常運行,需建立一個組織嚴密、運行高效、信息反饋及時的倉面組織管理系統。

(1)綜合協調系統:對混凝土一條龍施工提供技術、質量、安全、機電設備保障,確定拌和樓、澆筑手段及開倉時間,協調澆筑過程中出現的各種矛盾,組織處理突發事情。

(2)澆筑系統(倉面指揮):倉面指揮由澆筑隊長擔任,負責澆筑倉面的組織指揮,對倉位的要料、下料、平倉振搗、溫控、排水等負責,確保混凝土澆筑質量。

(3)操作系統:由調度室負責組織、協調,確保各操作系統正常運行,拌制合格的混凝土,并使混凝土準確、快速入倉。

3.2倉面工藝設計

3.2.1設計原則

倉面條帶布置要盡量簡化,標號切換次數盡可能少,塔帶機運行線路要短且易于操作,整個下料過程要易于實現,資源配置要充分,來料流程要優化。

3.2.2澆筑方法及強度要求

(1)平澆法:該方法適合于塔帶機高強度、快速運送混凝土的特點,在低溫季節,除倉面鋼筋特別多、結構特別復雜部位外,均采用平澆法澆筑。在高溫季節對于倉面面積小于500m2采用塔帶機入倉時,亦采用平澆法施工,澆筑時鋪層厚度可按照35~55cm下料。

(2)臺階法:對于倉面面積大、鋼筋密集、結構復雜的倉位,經監理批準后可使用臺階法澆筑,以滿足溫控及覆蓋前混凝土不初凝等條件要求。臺階的一次鋪料寬度控制在8~10m以上,接頭部位臺階寬度不小于3~4m。

3.2.3倉面設計的內容

倉面設計標準格式包括以下內容:

①倉面情況,包括倉面所在壩段、壩塊、高程、面積、方量、混凝土級配種類要求,倉位施工特點等;②倉面預計開倉時間、收倉時間、澆筑歷時、入倉強度、供料拌和樓;③倉面資源配置,包括機具、工具、材料、人員數量要求;④倉面設計圖,圖上標明混凝土分區線,混凝土種類標號,澆筑順序等;⑤混凝土來料流程表;⑥對倉面特殊部位如止水、止漿片周圍、鋼筋密集、過流表面等重要部位指定專人負責混凝土澆筑質量工作;⑦對特別重要部位,必須編制專門的施工措施;⑧倉面“澆筑情況評述”,收倉后,由質檢人員和監理工程師對該倉混凝土澆筑情況進行簡要評述,對可能存在的澆筑質量問題提出處理意見。

倉面設計由澆筑單位提出,一式六份,經監理批準后除班長、質檢員及監理隨身帶外,還應視情況復印送給有關部門(如拌和樓試驗室、塔帶機操作人員等)。

3.3塔(頂)帶機澆筑新工藝

混凝土快速優質施工,給澆筑工藝提出了更新更高的要求,因此,除對模板工藝、鋼筋工藝、預埋工藝外,對許多傳統工藝進行了改革。

3.3.1供料工藝

(1)供料皮帶上設置遮蓋或保溫措施。

(2)建立有效的樓(拌和樓)—帶(供料皮帶)—機(塔帶機)—倉(澆筑倉)之間的通訊聯系或自動監控系統。

(3)皮帶卸料處設置擋板、卸料導管和刮板,以避免骨料分離和砂漿損失。

(4)塔帶機輸送系統裝置沖洗設備,卸料后及時沖洗供料皮帶上所粘附的水泥砂漿。沖洗時采取措施防止沖洗水流入新澆混凝土中。

3.3.2布料工藝

(1)布料層面處理:用塔帶機澆筑四級配混凝土時,為便于塔帶機運輸,第一層層面處理一般不采取傳統的水平層面鋪砂漿的方法,而改用小級配混凝土或同強度等級的富砂漿混凝土。具體為:迎水面至排水管前緣區域,采用20cm厚二級配混凝土;其余部位(包括中塊)采用三級配富砂漿混凝土,層厚為一個澆筑坯層,約40cm。

(2)布料方向與次序:當平澆法澆筑時,迎水面倉位鋪料方向與壩軸線平行;上塊澆筑方向從上往下,下塊澆筑方向從下往上,中間倉位視倉面情況確定起始下料點;

基巖面、凸凹不平的老混凝土面及斜坡上的倉位,由低到高鋪料;

倉內采用多種標號混凝土時,原則上先高標號后低標號的下料順序,保證高標號區達到設計寬度要求;

有廊道、鋼管或埋件的部位,卸料時,廊道、鋼管兩側均衡上升,其兩側高差不得超過鋪料的層厚。

當采用臺階法澆筑時,從塊體短邊一端向另一端鋪料,邊前進、邊加高,逐步推進并形成明顯的臺階。澆筑壩體迎水面倉位時,采取順壩軸線方向鋪料。

(3)鋪料厚度與寬度:鋪料厚度視混凝土入倉速度、鋪料允許間隔時間和倉位大小決定。勞動組合、振搗器工作能力等要滿足澆筑的需要,必須保證下層混凝土初凝之前覆蓋上一層混凝土。采用平澆法時,鋪料層厚度一般采用50cm;采用臺階法澆筑時,鋪料層厚度一般采用50cm。對于升層高度1.5m的倉位,鋪料寬度取10~12m;對于升層高度2.0m的倉位,鋪料寬度取8~10m,臺階寬取2~3m。

3.3.3下料和振搗工藝

對沒有鋼筋的倉面,塔帶機下料時,下料導管卸料口距倉面應不大于1.5m,并均勻移動布料,堆料高度不宜大于1.0m,以免骨料分離。布料條帶清晰,并有足夠寬度。在模板周圍布料時,卸料點與模板的距離保持在1~1.5m,人工分散粗骨料后,再用平倉機將混凝土就位。在止水、止漿片和預埋件部位布料時,嚴禁下料導管直接下料,由人工送料填滿。

在進行水平鋼筋網澆筑層混凝土下料時,盡量降低下料高度,一次卸料的堆料高度控制在50cm以下,澆筑坯層厚度不大于30cm。豎向鋼筋部位卸料時,卸料部位應離開鋼筋0.5~0.8m,并加強人工平倉。

臺階法澆筑時,平倉振搗機站在中間(第二層)的臺階上,覆蓋范圍比較理想;平層法澆筑時,平倉機一般站在層面上,緊跟下料接頭,隨時下料,隨時振搗。

混凝土澆筑應先平倉后振搗,嚴禁以振搗代替平倉。振搗時間以混凝土粗骨料不再顯著下沉,并開始泛漿為準,以避免欠振或過振。

使用塔(頂)帶機澆筑的大倉位,應配置振搗機振搗。使用振搗機時,振搗棒組應垂直插入到混凝土中,振搗完應慢慢拔出;移動振搗棒組,應按規定間距相接;振搗第一層混凝土時,振搗棒組應距硬化混凝土面5cm。振搗上層混凝土時,振搗棒頭應插入下層混凝土5~10cm;振搗作業時,振搗棒頭離模板的距離應不小于振搗棒的有效作用半徑。

3.3.4養護工藝

(1)長期流水養護:根據現行水工混凝土施工規范,混凝土澆筑后養護時間一般為14d,重要部位養護到設計齡期;但三峽工程提出了更高的要求,主體工程普遍采取了長期流水養護。針對這一要求,再采用傳統的人工灑水養護工藝已不能滿足要求,必須推行新的養護工藝。

旋噴灑水養護適合于28d以內的較長間歇期倉面養護。方法是在澆筑倉面按一定間排距d設置360°旋轉式噴水嘴,若噴水嘴噴射幅度為B(m)則取d=0.8B保持旋噴嘴始終不停地工作,即可做到長流水養護。

噴淋管(花管)養護適合于正常上升倉位的四周垂直面或長間歇期倉面養護。方法是沿倉位邊線在模板上口(用于對倉面養護)或支腿(用于對側立面養護)上鋪設花管。所謂花管即在管壁上均勻布鉆一排細孔的口寸鋼管,使用時,將管兩端封堵,水霧通過細孔噴出,灑在養護面上。給花管不停地通水,便可保持長流水養護。

(2)倉面覆蓋養護:覆蓋保水養護。該方法適合于大于28d的長間歇倉面養護。方法是在養護倉面全面覆蓋養護材料,如隔熱被,風化砂或土等,給覆蓋材料浸水并始終保持覆蓋材料處于水飽和狀態,即可滿足養護要求。

覆蓋灑水養護適合于夏季正常上升的倉面養護。由于倉面蒸發快,僅采取灑水養護不能滿足要求,因此對倉面覆蓋材料灑水養護效果較好。

(3)養護組織管理:在三峽混凝土施工中,養護與鋼筋、模板、預埋件和澆筑并駕齊驅,已經成為一項工程。澆筑倉均配置專職養護人員,實行掛牌上崗。養護實施的記錄由養護專業人員及時記載,并做到真實、詳盡。

4結論

主站蜘蛛池模板: 玉林市| 昌图县| 略阳县| 淮滨县| 沅陵县| 沙湾县| 土默特左旗| 荃湾区| 麻栗坡县| 上高县| 阜南县| 苏尼特右旗| 普洱| 盱眙县| 隆子县| 塔河县| 临清市| 汨罗市| 泸州市| 萨迦县| 五华县| 玉林市| 河源市| 铅山县| 醴陵市| 南漳县| 韶山市| 绥棱县| 濉溪县| 南陵县| 宁河县| 台南市| 彰化市| 普兰县| 成都市| 兴安县| 邵东县| 长岭县| 昌黎县| 资源县| 阳泉市|